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B.Tech. (BME/ECE/EE/EEE/EIE) (Sem.–3)
ENGG. MATHEMATICS / APPLIED MATHEMATICS – III
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Paper ID : [A0303]

Time : 3 Hrs. Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :
1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks

each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students

have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students

have to attempt any TWO questions.

SECTION-A

1. Write briefly :

1. Find the Fourier series expansion of the periodic function

( ) , – , ( 2 ) ( ).f x x x f x f x     

2. Write the Euler’s formula for Fourier coefficients.

3. If L[f(t)] = F(s), show that L[f(at)] = (l/a)F(s/a), where L[f (t)] represents
the Laplace transform of the function f(t).

4. Find the Laplace transform of (i) e5tt2     (ii) t sin 4t.

5. Show that the function u(x, y) = y3 – 3x2y is harmonic.

6. Find the general and principal value of ii.

7. Define Bessel’s differential equation and Bessel function of first kind.

8. Eliminate the arbitrary function from z = f(x2 + y2) to obtain a first order
partial differential equation.

9. Write one dimensional wave equation and heat equation.

     10. Find the value of Legendre polynomial P4(x).
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SECTION-B

2. Find a Fourier series to represent a function f(x) = x – x2 from x = –  to

x =   and hence show that  
2

2 2 2 2
1 1 1 1– – ....... .121 2 3 4

  

3. Find the solution of the initial value problem, using Laplace transforms

2 2 2, (0) 1, (0)     ty ty y y y is arbitrary..

4. Find all possible Laurent series expansions of the function 2
1( )

( 1) ( 2)
f z

z z


 

about the point z = 1.

5. Show that –1( ) ( ),   
v v

v vx J x x J x  where Jv(x) is the Bessel function of first

kind.

6. Solve the differential equation r + 2s + t = 2 sin y – x cos y.

SECTION-C

7. (a) Use residue theorem to evaluate the integral 4
1 ; : –1 1.

1C
ds C z

z


 (6)

(b) Show that the function u(x, y) = 2x + y3 – 3x2y  is harmonic. Find its
harmonic conjugate and hence construct the corresponding analytic function
f(z). (4)

8. (a) Find the general solution of Lagrange’s equation
px (x + y) = qy (x + y) – (x – y) (2x + 2y + z) (5)

(b) Let f (t) be piecewise continuous on [0,  ], be of exponential order and

periodic with period T.  Then   –
– 0

1( ) ( ) , 0
1–

 
T st

sTL f t e f t dt s
e (5)

9. (a) Find the Fourier cosine series of the function  
2 0 2,( )

4 2 4
x xf x

x
   

 
(5)

(b) Find the inverse Laplace transform of the functions (i) 
–

4

se
s

 and (ii) 2 2
1

( )s s a .

(5)
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