Roll No. \square Total No. of Pages : 02
Total No. of Questions : 09
B.Tech. (BME/ECE/EE/EEE/EIE) (Sem.-3)

ENGG. MATHEMATICS / APPLIED MATHEMATICS - III Subject Code : AM-201

Paper ID : [A0303]

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :
2. Find the Fourier series expansion of the periodic function

$$
f(x)=x,-\pi \leq x \leq \pi, f(x+2 \pi)=f(x) .
$$

2. Write the Euler's formula for Fourier coefficients.
3. If $L[f(t)]=F(s)$, show that $L[f(a t)]=(1 / a) F(s / a)$, where $L[f(t)]$ represents the Laplace transform of the function $f(t)$.
4. Find the Laplace transform of (i) $e^{5 t} t^{2}$ (ii) $t \sin 4 t$.
5. Show that the function $u(x, y)=y^{3}-3 x^{2} y$ is harmonic.
6. Find the general and principal value of i^{i}.
7. Define Bessel's differential equation and Bessel function of first kind.
8. Eliminate the arbitrary function from $z=f\left(x^{2}+y^{2}\right)$ to obtain a first order partial differential equation.
9. Write one dimensional wave equation and heat equation.
10. Find the value of Legendre polynomial $P_{4}(x)$.

SECTION-B

2. Find a Fourier series to represent a function $f(x)=x-x^{2}$ from $x=-\pi$ to $x=\pi \quad$ and hence show that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \ldots=\frac{\pi^{2}}{12}$.
3. Find the solution of the initial value problem, using Laplace transforms $t y^{\prime \prime}+2 t y^{\prime}+2 y=2, y(0)=1, y^{\prime}(0)$ is arbitrary.
4. Find all possible Laurent series expansions of the function $f(z)=\frac{1}{(z+1)(z+2)^{2}}$ about the point $z=1$.
5. Show that $\left[x^{v} J_{v}(x)\right]^{\prime}=x^{v} J_{v-1}(x)$, where $J_{v}(x)$ is the Bessel function of first kind.
6. Solve the differential equation $r+2 s+t=2 \sin y-x \cos y$.

SECTION-C

7. (a) Use residue theorem to evaluate the integral $\oint_{C} \frac{1}{z^{4}+1} d s ; C:|z-1|=1$.
(b) Show that the function $u(x, y)=2 x+y^{3}-3 x^{2} y$ is harmonic. Find its harmonic conjugate and hence construct the corresponding analytic function $f(z)$.
8. (a) Find the general solution of Lagrange's equation

$$
\begin{equation*}
p x(x+y)=q y(x+y)-(x-y)(2 x+2 y+z) \tag{5}
\end{equation*}
$$

(b) Let $f(t)$ be piecewise continuous on $[0, \infty]$, be of exponential order and periodic with period T. Then $L[f(t)]=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t, s>0$
9. (a) Find the Fourier cosine series of the function $f(x)=\left\{\begin{array}{cc}x^{2} & 0 \leq x \leq 2, \\ 4 & 2 \leq x \leq 4\end{array}\right.$
(b) Find the inverse Laplace transform of the functions (i) $\frac{e^{-s}}{s^{4}}$ and (ii) $\frac{1}{s\left(s^{2}+a^{2}\right)}$.

