Roll No. \square Total No. of Pages : 02
Total No. of Questions: 09

B.Tech.(CE/ECE/EE/Electrical \& Electronics/Electronics \& Electrical/ ETE)/(Electronics \& Computer Engg.)(2011 Onwards)

B.Tech. (Electrical Engineering \& Industrial Control)/Electronics Engg. (2012 onwards) (Sem.-3) ENGINEERING MATHEMATICS-III

Subject Code : BTAM-301
 Paper ID : [A1128]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

1. Write briefly :
(a) Find, $L\left(4^{t}+t \sin t\right)$.
(b) State and prove the change of scale properties of Laplace transforms.
(c) Find the residue at $\mathrm{z}=0$ of $\mathrm{f}(\mathrm{z})=\mathrm{z} \cos \frac{1}{z}$.
(d) State any one important property of analytic functions.
(e) State the three possible solutions for the Heat equation,

$$
\frac{\partial u}{\partial t}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

(f) Write the formulae for finding the half range cosine series for the function $f(x)$ in the interval $(0,2)$.
(g) State Dirichlet's conditions for the expansion of $f(x)$ as a Fourier series in the interval $(0,2 \pi)$.
(h) Expand e^{z} in Taylor's series about the point $\mathrm{z}=\mathrm{a}$.
(i) Form the partial differential equation from, $(x-a)^{2}+(y-b)^{2}=z^{2} \cot ^{2} \alpha$ where α is a parameter.
(j) Write the solution of the differential equation,
$P_{0}(x) y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(x) y=0$, when the roots of the indicial equation are equal.

SECTION-B

2. Solve $y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=t^{2} e^{t}$ where $y(0)=1, y^{\prime}(0)=0$ and $y^{\prime \prime}(0)=-2$ by using Laplace transforms.
3. Expand, $f(z)=\frac{1}{(1-z)(z-2)}$ in Laurent's series valid for the regions,
(i) $1<? \mathrm{z} ?<2$
(ii) ? z ? >2
4. Find the Fourier series of, $f(x)=x+x^{2}$ in the range $[-\pi, \pi)$.
5. With usual notation, prove that, $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x$.
6. Solve the partial different equation, $(y+z x) p-(x+y z) q=x^{2}-y^{2}$.

SECTION-C

7. Use the concept of residues to evaluate, $\int_{0}^{2 \pi} \frac{d x}{a+b \sin x^{\prime}} a>b$.
8. A string of length l is stretched and fastened to two fixed points. Find the solution of the one dimensional wave equation when initial displacement,
$\mathrm{y}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x})=\mathrm{b} \sin \frac{\pi x}{l}$.
9. Solve in series, $x \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+x y=0$.
