APPLIED MATHEM ATICS-I

$1^{\text {st }}$ Exam/common/2455/0251/5402/M ay'16

Duration : 3 Hrs.

M. Marks 75

SECTION - A

Q1.A. Choose the correct one:
i. Conjugate of $3-\mathrm{i}$ is
(a) $-3-i$
(b) $-3+i$
(c) $3+i$
(d) 3 i
ii. $\quad 10^{\text {th }}$ term of A.P Series $5+7+9+11+$ \qquad
(a) 23
(b) 24
(c) 25
(d) 21
iii. Middle term of $\left(x^{2}+1 / x\right)^{2}$ is
(a) $2 x$
(b) 2
(c) $3 x$
(d) $4 x$
iv. $\operatorname{Sin} \theta=1 / 3$ and $\cot \theta=-\mathrm{V} 8$ then θ lies in
(a) First quadrant
(b) Second quadrant
(c) Third quadrant
(d) Fourth quadrant
v. The centroid of a triangle whose vertices are $(2,-8)$; $(14,3)$; and $(-10,8)$ is
(a) $(1,1)$
(b) $(2,2)$
(c) $(-2,1)$
(d) $(2,1)$
B. State whether the following statements are true or false.
i. Area of triangle is zero then three angular points are collinear.
ii. When equation of parabola is $\mathrm{y}^{2}=4 a x$ then Focus is $(-\mathrm{a}, 0)$.
iii. Factorial of zero is zero.
iv. $\tan (45+\theta)=\frac{1+\tan \theta}{2+\tan \theta}$
v. If a, b, c are in G.P then $b^{2}=a c$

C. Fill in the blanks.

$1 \times 5=5$

i. $\quad P(7,3)=$ \qquad
ii. $\quad \operatorname{Sin} 18^{\circ}=$ \qquad
iii. Logarithms to the base 10 are called \qquad
iv. The fixed straight line in parabola is called \qquad
v. In which quadrant, the angle 750° lies \qquad

SECTION - B

Q2. Attempt any six questions.

5X6=30
a. How many terms of the series $3+8+13+18+$. \qquad M ust be taken so that their sum is 1010
b. Sum the series $5+55+555+$. \qquad n terms
c. If $a^{2}+b^{2}=7 a b$ prove that $\log \left(\frac{a+b}{3}\right)=\frac{1}{2}[\log a+\log b]$
d. Find the absolute term in the expansion of $\left(3 x^{2}-1 / x^{3}\right)^{10}$
e. If $\sin (A+B)=\sqrt{ } 3 / 2$ and $\operatorname{Cos}(A-B)=\sqrt{ } 3 / 2$ then find A and B.
f. Prove that $\tan 65=\tan 25+2 \tan 40$
g. Obtain the equation of straight line passing through the point of intersection of $2 x+3 y+1=0 ; 3 x-4 y=5$ and the point $(2,3)$
h. Find the perpendicular distance of the origin from the line joining $(1,3)$ and $(-3,7)$
i Resolve into partial fraction $\frac{2 x+3}{(x-2)(x+3)}$

SECTION - C

Attempt Any Three Questions.

$10 \times 3=30$
Q3. Prove $\frac{\sin 11 A \sin A+\sin 7 A \sin 3 A}{\cos 11 A \sin A+\cos 7 A \sin 3 A}=\tan 8 A$

Q4. Find the equation of circle passing through points $(0,0) ;(a, 0)$, and $(0, b)$
Q5. Find the equation of a circle where centre is the point $(4,5)$ and which passes through the centre of the circle $x^{2}+y^{2}+4 x-6 y=12$

Q6. From the top of cliff 120 meter high the angle of depression of top and bottom of a tower are observed to be 30° and 60°. Find the height of tower.

Q7. Resolve into Partial Fraction $\frac{1}{x^{3}+1}$
Q8. Reduce the equation $\sqrt{3 x}+y+6=0$ to the form of $x \cos \alpha+y \operatorname{Sin} \alpha=p$ Also finds the value of p and α.

