Roll No. Total No. of Pages : 02

Total No. of Questions: 09

B.Tech.(BME/ECE/EE/EEE/EIE/Textile) (Sem.-3) APPLIED MATHEMATICS - III / ENGINEERING MATHEMATICS

Subject Code: AM-201 Paper ID: [A0303]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) State the conditions under which a function f(x) can be developed as a Fourier series.
- b) Write the half range sine series for 1 in $(0, \pi)$
- c) Evalaute $\int_{0}^{\infty} \frac{\sin t}{t} dt$.
- d) State the first shifting property for the laplace transforms.
- e) Write the expansions for $J_0(x)$ and $J_1(x)$
- f) Solve p + q = 0.
- g) Explain how to solve f(z, p, q) = 0.
- h) Evaluate $\int_{c} \frac{dz}{z-a}$ where C is the circle |z-a|=r, a constant.
- i) State the Laurent's Theorem.
- j) Define a pole.

1 M-54501 (S2)-571

Visit www.brpaper.com for downloading previous years question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, M-Tech, PGDCA, B-com

SECTION-B

2. Obtain the Fourier series for the function f(x) given by

$$f(x) = 1 + \frac{2x}{\pi}, \quad -\pi \le x \le 0$$
$$= 1 - \frac{2x}{\pi}, \quad 0 \le x \le \pi$$

Deduce that,
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots + \frac{\pi^2}{8}$$
.

- 3. Find: $L^{-1} \left\{ \log \frac{s+1}{s-1} \right\}$.
- 4. With usual notations, prove that $\frac{d}{dx}[x^{-n}J_n(x)] = -x^{-n}J_{n+1}(x)$.
- 5. Solve: $z^2(p^2+q^2)=x^2+y^2$.
- 6. Find an analytic function f(z) = u + iv given that,

$$u + v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$$

SECTION-C

- 7. Solve: $\frac{d^2y}{dt^2} + 9x = \cos 2t$, if x(0) = 1, $x\left(\frac{\pi}{2}\right) = -1$.
- 8. A tightly stretched string of length l with fixed ends is initially in equilibrium position. It is set vibrating by giving each point a velocity $v_0 \sin^3 \frac{\pi x}{l}$. Find the displacement y(x, t).
- 9. Prove that $\int_{0}^{\pi} \frac{ad\theta}{a^2 + \sin^2 \theta} = \frac{\pi}{\sqrt{1 + a^2}}, \ a > 0.$