Roll No. Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(CSE / IT) (Sem.-3) DIGITAL CIRCUITS AND LOGIC DESIGN

Subject Code: CS-205 Paper ID: [A0453]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Q1) Write briefly:

- a) Differentiate between synchronous and asynchronous counters.
- b) How do Demultiplexer differ from Decoder?
- c) Subtract –26 from 67 using 2's complement
- d) Are CMOS memory chips better over bipolar memory chips? Comment.
- e) Convert: $(153.513)_{10} = ()_8$
- f) Outline two major applications of multi-vibrators?
- g) What is meant by resolution of an A/D convertor?
- h) Find $x : (BEE)_x = (2699)_{10}$
- i) A preset able counter has sixteen flip-flops. If the preset number is 125, what is the modulus?
- j) What is the minimum voltage value that is considered as high stage input for TTL logic family?

1 M-56503 (S2)-761

SECTION-B

- Q2) Draw the logic symbol and construct the truth table for each of the following gates:
 - a. Three input NAND gate
 - b. Two input OR gate
 - c. Three input EX-NOR gate
- Q3) What is an Encoder? Compare a decoder and a Multiplexer with suitable block diagrams.
- Q4) Design a MOD-3 synchronous counter using J-K Flip Flops.
- Q5) Differentiate between static MOS and Dynamic MOS RAM. Explain the working of a static MOS RAM cell with the help of a circuit diagram.
- Q6) State and prove De-Morgan's Theorem for three variables.

SECTION-C

Q7) Write out the minimized Boolean Algebra Expression for each of the Karnaugh maps below. Also, Construct Truth tables for each of the maps.

∖ ab					$\setminus a$	b					$\setminus ab$					
cd	00	01	11	10	cd\	<u>\ </u>	01	_11	10		cd	\ ₀₀	01	11	10	
00	1		1	1	O	0 1	1				00	1			1	
01	1			1	0	1					01					
11					1	1 1			1		11					
10			1		1	0 1	1		1	_	10/	1			1	
			1 1													

- Q8) Elaborate VLSI design with an example of custom and semi-custom design.
- Q9) Write short notes on:
 - a) Semiconductor memories
 - b) Bus Structures

2 M-56503 (S2)-761