Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(CSE/IT) (Sem.-4)

MATHEMATICS - III

Subject Code: CS-204

Paper ID: [A0495]

Time: 3-Hrs.51 51 51 51 51 51 51 51 51 51 51 50 Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

- 1.51 Write briefly:
 - (a) Show that the function e^z is analytic in finite z-plane.
 - (b) Find general and principal values of $(1+\sqrt{3}i)^{1+i}$.
 - (c) Find the residues at all singular points of $\frac{z^2}{(z^2+1)^2}$
 - (d) State Rolle's Theorem.
 - (e) Using Lagrange's Mean Value Theorem, show that : $|\cos b \cos a| \le |b a|$.
 - (f) Obtain approximate value of y (1.2) for the initial value problem $y' = -2xy^2$, y (1) = 1, using Taylor's series method with step size $\lambda = 0.1$
 - (g) Obtain Picard's second approximate solution of the initial value problem

$$\frac{5}{5}\frac{dy}{dx} = \frac{5}{5}\frac{x^2}{y^2 + 1}, y(0) = 0.$$

- (h) Write Milne's predictor-corrector formulas.
- (i) Find general and principal values of $\log (-1)$.
- (j) Define conformal mapping.

SECTION-B

- 2.51 Find the volume of the solid in the first octant bounded by the parabolic $z = 36 4x^2 9y^2$. 51 51 51 51 51 51 51 51
- Find the centre of gravity of a plate whose density p(x, y) is constant and is bounded by the curves $y = x^2$ and y = x + 2. Also find the moment of inertia about the axis.
- 4.51 If f(z) u + iv is an analytic function of z = x + iy and $u v = e^{-x} [(x y) \sin y (x + y) \cos y]$ then find u and v.
- 5.51 Using Runge-Kutta method find y (1.2) for the initial value problem $\frac{d\tilde{y}}{dx} = x^2 + y^2$, y (1) = 1.5, by taking step size $\lambda = 0.1$. 51
- 6.51 Solve the partial differential equation $\frac{\partial^2 z}{\partial x^2} 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$ by the method of separation of 51 variables. 1 51 51 51 51 51 51 51 51 51 51 51

SECTION-C

- 7.51 (i) Obtain the terms upto z^3 in the Taylor Series expansion of $f(z) = \frac{z^2 + \sin^2 z}{1 \cos z}$.
 - (ii) Determine the angle of rotation at the point $z = \frac{1+i}{2}$ under the mapping $w = z^2$. Also find its scale factor.
- 8. $\frac{51}{51}$ (i) $\frac{51}{51}$ $\frac{51}{51}$
 - (ii) Using Laplace transforms. Find the solution of the initial value problem $\frac{\partial u}{\partial x} + x \frac{\partial u}{\partial t} = xt, \ u(x, 0) = 0, \ u(0, t) = t.$
- 9. An insulated rod of length *l* has its ends A and B maintained at 0°C and 100°C respectively until steady state conditions prevail. If B is suddenly reduced to 0°C and maintained at 0°C, find the temperature at a distance *x* from A at time *t*. Also find the temperature if the change consists of raising the temperature of A to 20°C and reducing that of B to 80°C.