Roll No. Total No. of Pages: 03

Total No. of Questions: 09

B.Tech.(CSE/IT) (2011 Onwards) (Sem.-4)

OPERATING SYSTEMS

Subject Code: BTCS-401 Paper ID: [A1183]

Time: 35Hrs.51 51 51 51 51 51 51 51 51 51 51 Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a. What is the difference between dynamic and static linking?
- b. What are the differences between load-time and run-time dynamic linking?
- c. What is software trap and how is it used in operating system design?
- d. What is difference between preemptive and non-preemptive scheduling?
- e. Describe terms long-term, medium-term and short-term thread scheduling.
- f. Describe the terms: internal and external fragmentation.
- g. What are consequences of choosing large page sizes, and what of small page sizes?
- h. Why the page size has to be a power of two?
- i. What is page replacement? List all page replacement policies you know.
- j. What is disk formatting and what basic information is stored with each disk sector.

SECTION-B

1 $| M_1 - 5 = 6.604_{E1}$ $E_1 = 6.1$ $E_2 = 6.1$ $E_3 = 6.1$ $E_4 = 6.1$

- 4. 51 a) 5 What is disk scheduling?
 - b) When is it used?
 - c) Why is it used?
 - d) Who is performing the disk scheduling?
 - e) What disk scheduling algorithms do you know? 51 51 51 51 51 51
- 5.51 Given the following information:5

5Job Number			51 Arr	Arrival time			CPU Cycle	51	51 Priority 51			
51	51	51	51 51	0 ⁵¹	→ 51	51	51 75 51	51	51	3	51	5
51 51	2	51	31 3	10	51	51	51 40 51	51		21	51 51	5
51	₅ 3	51	51 5	10	51	51	51 25 51	51	5	54	51	5
51	5 4	51		801	51	51	51 20 51	51	51	5 5	51	5
51	5 5	51	51	851	51	51	51 45 51	51	51	52	51	5

Draw a timeline for each of the following scheduling algorithms and determine which one gives the best results.

- 1) ⁵FCFS
- 2) 5SJF
- 3) Round Robin (using a time quantum of 15)
- 4) Priority scheduling.

Assume a small integer means higher priority. 51 51 51 51 51 (5)

- 6.51 a) What causes a process/thread to change the state?
 - i. From running to ready?
 - ii. From ready to running?
 - iii. From running to blocked? 51
 - iv. From blocked to ready? 51 51 51 51 51 51 51 51 51 51 51

2 $| M_1 - 5 = 6.604_{51}$ $_{51}$ $_{51}$ $_{51}$ $_{51}$ $_{51}$ $_{51}$ $_{51}$ $_{51}$ $_{51}$ $_{51}$ $_{51}$ $_{51}$ $_{51}$ $_{51}$ $_{52}$) -57 3 8

SECTION-C

- 7 51 Considers a system consisting of *m* resources of the same type, being shared by n.51 processes. Resources can be requested and released by processes only one at a time. 51 Show that the system is deadlock-free if the following two conditions hold: 51 51
 - a) The maximum need of each process is between 1 and m resources
 - b) The sum of all maximum needs is less than $m + n^{-1}$ 51 51 51 51 51 51
- 8 51 a) 5 Consider the following snapshot of a system:

	Allocation			Max 51	51	5 Av a	nilable
	ABCD			ABCD 54	51	5 AB	CD
⁵ P0	0 0 1 2			0012	51	⁵ 152	0^{51}_{-1}
P1	1000			1750	51 51		
₅ P2	1354 51			2356			
5 P 3	0632 51	51		0652 51			
5 P 4	0014 51	51	51	0656 51			

Answer the following question using the banker's algorithm:

- a) 5 What is the content of the matrix Need? 51 51 51 51 51 51 51 51
- b) Why are segmentation and paging sometimes combined into one scheme? 51 (5)
- - b) Consider the following segment table:

51	51 Segment 1			51	51 51 Base 51 51					51	51 Length 51			
51	51	510	51	51	51	5	219	51	51	51	51	600	51	51
51	51	511	51 51	51	51	51	230	51	51	51 51	51	014	51	51
51	51	512	51	51	51	51	90	51	51	51	51	100	51	51
51	51	513	51	51	51	51	1327	51	51	51	51	580	51	51
51	51	514	51	51	51	51	1952	51	51	51	51	961	51	51

What are the physical addresses for the following logical addresses? Explain:

- a. 0,430
- b. 1,10
- c. 2,500
- d. 3,400