Visit www.brpaper.com for downloading previous years question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, M-Tech, PGDCA, B-com

Roll No. Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(CSE)/(IT) (Sem.-4)
SYSTEM PROGRAMMING
Subject Code: CS-210

Paper ID : [A0462]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION A

1. Write briefly:

- a. What are the elements of assembly language programming?
- b. Define memory binding.
- c. Define local optimization and global optimization of program.
- d. Define overlays.
- e. Define line editor.
- f. Define absolute loader.
- g. What is the difference between complier and interpreter?
- h. What is the use of symbol table?
- i. Explain finite automata and its uses.
- j. What is the difference between parse tree and syntax tree?

SECTION-B

- 2. What are the limitations of stack based memory allocation? Also discuss the advantages of array based allocation.
- 3. Comment on the following statement: "There would be no need for linkers if all programs are coded as self relocating programs".
- 4. Explain the role of YACC.

1 M - 5 6 5 1 7 (\$ 2) - 7 8 8

- 5. Explain the steps involved in dynamic debugging of a program.
- 6. Explain the typical mechanism contained in the OS kernel.

SECTION-C

- 7. Explain the four step approach to develop a design specification for an assembler.
- 8. Write short notes on:
 - a) Booting techniques
 - b) Design of shell
- 9. Build a program flow graph for the following program:

```
z: = 5;
w: = z;
for i: = 1 to 100 do
x : = a*b;
y : = c+d;
if y < 0 then
a : = 25;
f : = c+d;
else
g : = w;
h : = a*b+f;
d : = z+10;
```

end;

g := c+d;

print g, h, d, x, y;

Apply the following transformations to optimize the program:

- a) Common subexpression elimination
- b) Dead code elimination
- c) Constant propagation
- d) Frequency reduction

2 | M - 5 6 5 1 7 (S 2) - 7 8 8