Visit **www.brpaper.com** for downloading previous years question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, M-Tech, PGDCA, B-com

Roll No. Total No. of Pages: 03

Total No. of Questions: 09

B.Tech.(ME) (2011 Onwards) (Sem.-7,8)

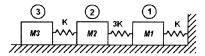
MECHANICAL VIBRATIONS

Subject Code: BTME-803 Paper ID: [A3064]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

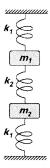
- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.


SECTION-A

Q1 Write briefly:

- a) If the motion of a particle is represented by $x = A \sin(\omega t) + B \sin(2 \omega t)$; determine its velocity at time, t = 2s, given: A = 4mm, B = 2mm and $\omega = 5$ rad/s.
- b) Calculate the number of samples (2k) that will be recorded per cycle of the fifth harmonic of a 1 kHz periodic signal by a 1 MHz data recorder.
- c) Given $V_1 = 4e^{j0}$ and $V_2 = 2e^{j\frac{3\pi}{2}}$; determine analytically the phase-angle β of the resultant, V_R with the first vector V_1
- d) Determine damped natural frequency, ω_d for a system having mass, m = 1000 kg, static deflection, $\Delta = 98 \text{mm}$ and damping coefficient, $c = 10^4 \text{ N/m/s}$. Take $g = 9.8 \text{ m/s}^2$
- e) Determine the minimum and maximum values for periodic function $f(t) = e^{\sin(\omega t)}$ and without solving, comment whether the constant term a_0 in Fourier analysis of this function would be a negative, zero or positive quantity.
- f) The damped natural frequency (ω_d) of a system is 86.6Hz, while the maximum amplitude occurs at an exciting frequency (ω_p) of 70.7 Hz. Find the damping factor (ζ) and the undamped natural frequency (ω_n) .
- g) State the design criteria for acceleration measuring instruments.

1 | M - 71996 (S2)-2642


- h) Applying Euler's theorem to the complex representation of vector $V = 1e^{j\frac{\pi}{2}}$ where $j = \sqrt{-1}$, show that j^j is real.
- i) Neglecting friction and inertia forces, determine all nine (flexibility) influence coefficients for the system shown in figure.

j) Determine the estimate for lowest natural frequency of a 3 DoF system by Dunkerley's method, if its component frequencies are 10, 14 and 20 Hz.

SECTION-B

- Q2 If two harmonic motions x_1 and x_2 of equal amplitude X and frequencies ω_1 and ω_2 respectively are added, show that their resultant displacement x is in the form of product of a higher and a lower frequency motion.
- Q3 Determine the mass M to be placed at the end of the reeds of a Fraham's tachometer so as to get a frequency of 50 rad/s; Given: Length of reed, L = 50mm; width, w = 6mm; thickness, t = 0.5mm; and $E = 19.6 \times 10^{10} \text{N/m}^2$.
- Q4 For the 2DoF spring-mass system shown in figure is constrained at both ends. The two springs on sides are identical with a stiffness of $k_1 = 2000$ N/m, while the middle spring has a stiffness of $k_2 = 3000$ N/m, $m_1 = m_2 = 20$ kg. Determine the two natural frequencies of the system.

2 | M - 71996 (S2)-2642

- Q5 A shaft AE of 50mm diameter and length, L = 6m carries three discs at locations B, C and D of 1kg each, mounted at a distance of $L_i = 2$, 3 and 4 m from the left end. Find the lowest frequency of vibration by Dunkerley's method. Given, $E = 1.96 \times 10^{11} \text{ N/m}^2$, deflection, $y_i = \frac{(m_i g) L_i^2 (L L_i)^2}{3EIL}$ for simply supported shaft.
- Q6 Starting with the expression for strain energy u during free longitudinal vibrations of a bar of length L and uniform cross-section, determine the normal functions for the boundary conditions as one end fixed and the other end free.

SECTION-C

- Q7 Using analytical method, determine the harmonics of the saw-tooth wave function given by f(t) = 3t for 0 < t < 2
- Q8 A beam having L = 0.42m, $I = 1 \times 10^{-6}$ m⁴ and $E = 1.96 \times 10^{11}$ N/m² is supporting two masses, $m_1 = 40$ kg and $m_2 = 20$ kg at distances of 0.16 and 0.24m from left end.
 - Determine the lowest natural frequency of the system by Rayleigh's method.
- Q9 A torque T_0 applied at the midpoint of a uniform circular shaft of length L twists it by an angle θ_θ radians. Solve for the resulting motion of the shaft if this torque is released suddenly.

3 M - 71996 (S2)-2642