Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), B-Tech, Diploma, BBA, BCA, MBA, MCA, M-Tech, PGDCA, B-Com, BSC-IT, MSC-IT.

Roll No. Total No. of Pages: 03

Total No. of Questions: 09

B.Tech.(2009-2010 Batches) (Sem.-2) ENGINEERING MATHEMATICS - II

Subject Code: AM-102 Paper ID: [A0119]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

1. Write briefly:

a) Verify that the following matrix *B* is orthogonal:

$$B = \begin{bmatrix} \cos A & 0 & \sin A \\ 0 & 1 & 0 \\ \sin A & 0 & \cos A \end{bmatrix}$$

- b) Show that every square matrix can be written as P+iQ, where P and Q are Hermitian matrices.
- c) Show that the differential equation $(x^2 4xy 2y^2)dx + (y^2 4xy 2x^2)dy = 0$ is exact.
- d) Solve the differential equation $(D^2 + 6D + 9)y = 0$.
- e) A particle executing simple harmonic motion of amplitude 5 cm has a speed of 8 cm/sec when at a distance of 3 cms from the centre of the path. Find the period of the motion of the particle.
- f) If $\varphi = 3x^2y y^3z^2$, find grad φ at the point (1,-2,-1).
- g) Verify Green's theorem for $\int_C [(xy+y^2)dx + x^2dy]$, where C is bounded by y = x and $y = x^2$.
- h) Show that the vector field $\vec{F} = (x^2 y^2 + x)\hat{i} (2xy + y)\hat{j}$ is irrotational.

1 M-54002 (S1)-368

Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), B-Tech, Diploma, BBA, BCA, MBA, MCA, M-Tech, PGDCA, B-Com, BSC-IT, MSC-IT.

- i) If mean of a Poisson distribution is m, then find its S.D.
- j) State two applications of χ^2 -test.

SECTION-B

2. a) Reduce the following matrix to normal form and hence find its inverse. 4

$$A = \begin{bmatrix} 1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1 \end{bmatrix}$$

b) Test the following system of equations for consistency and solve.

$$x+2y+z=3$$
; $2x+3y+2z=5$; $3x-5y+5z=2$; $3x+9y-z=4$.

3. Find complete solutions of the following differential equations:

a)
$$(x^3y^2+x)dy + (x^2y^3-y)dx = 0$$

4

4

b)
$$y = xp^2 + p$$

4. a) Find complementary function and particular integral of the following differential equation:

$$(D^2 - 4D + 3)y = \sin 3x \cos 2x$$

b) Find complete solution of the following Legendre differential equation :

$$(2x+3)^2 \frac{d^2y}{dx^2} - (2x+3)\frac{dy}{dx} - 12y = 6x$$

5. A constant *e.m.f E* at time t = 0 is applied to circuit consisting of inductance L, resistance R and capacitance C in series. The initial values of the current and the charge being zero, find the current at any time t, if $CR^2 < 4L$.

SECTION-C

6. a) Find the directional derivative of $\varphi(x,y,z) = xy^2 + yz^3$ at the point (2,-1,1) in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$.

b) If
$$\vec{F} = 2y\hat{i} - z\hat{j} + x\hat{k}$$
, evaluate $\int_C \vec{F} \times d\vec{R}$ along the curve $C: x = \cos t$, $y = \sin t$, $z = 2\cos t$ from $t = 0$ to $t = \pi/2$.

2 M-54002 (S1)-368

- 7. a) Apply Green's theorem, evaluate $\int_C [(y-\sin x)dx + \cos xdy]$, where C is the plane triangle enclosed by the lines y=0, $x=\pi/2$ and $y=\frac{2}{\pi}x$.
 - b) Verify Stoke's theorem for a vector field defined by $\vec{F} = -y^3 \hat{i} + x^3 \hat{j}$ in the region $x^2 + y^2 \le 1, z = 0.$
- 8. a) The probability density function of a variate X is given below:

Find P(X < 4), $P(X \ge 5)$, $P(3 < X \le 6)$. What will be the minimum value of k so that $P(X \le 2) > 3$?

4

b) Fit a second degree parabola to the following data:

- 9. a) In two large populations there are 30% and 25% respectively of fair haired people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the two populations?
 - b) In an experiment on pea breeding, the following frequency of seeds were obtained:

Round & Yellow	Wrinkled & Yellow	Round & Green	Wrinkled & Green	Total
315	101	108	32	556

Theory predicts that the frequencies should be in proportions 9:3:3:1. Examine the correspondence between theory and experiment.

3 M-54002 (S1)-368