Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), B-Tech, Diploma, BBA, BCA, MBA, MCA, M-Tech, PGDCA, B-Com, BSC-IT, MSC-IT.

Roll No. Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(2009-2010 Batches) (Sem.-1)
ENGINEERING MATHEMATICS-I

Subject Code: AM-101 Paper ID: [A0111]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

1. Write briefly:

- a) Under what condition or conditions, a curve is symmetrical in the opposite quadrants?
- b) Find the area bounded by the parabola $y^2 = 4x$ and its latus rectum.
- c) State Euler's theorem on homogeneous functions.
- d) If $x = r \cos \theta$, $y = r \sin \theta$, show that, $\frac{\partial r}{\partial x} = \frac{\partial x}{\partial r}$.
- e) State Taylor's series for a function of two variables.
- f) Find the equation of the sphere in which the end points of one of the diameters, are (2,-3,1) and (3,-1,2).
- g) Define a gamma function.
- h) State root test for the convergence of a positive term series.
- i) Solve the equation $x^4 = -1$.
- j) Give an example of an oscillatory series.

1 | M - 5 4 0 0 1 (S 1) - 3 6 7

Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), B-Tech, Diploma, BBA, BCA, MBA, MCA, M-Tech, PGDCA, B-Com, BSC-IT, MSC-IT.

SECTION-B

- 2. Find the radius of curvature at the vertex of the cycloid, $x = a(\theta + \sin \theta)$; $y = a(1 \cos \theta)$.
- 3. Find the area of the curve $r^2 = a^2 \cos \theta$.
- 4. If $u = x \log xy$, where $x^3 + y^3 + 3xy = 1$, find $\frac{du}{dx}$.
- 5. Discuss the extreme values of, $x^3 y^2 7x^2 + 4y + 15x 13$.

SECTION-C

- 6. Find the equation to the right circular cone whose vertex is at (2,-3,5), axis makes equal angles with the coordinate axes, and the vertical angle is measured to be 60° .
- 7. Evaluate $\iiint xyz \, dz \, dy \, dx$ over the volume enclosed by three coordinate planes and the plane, x + y + z = 1.
- 8. Test the convergence of the series, $x(\log 1)^p + x^2(\log 2)^p + x^3(\log 3)^p + x^4(\log 4)^p + ...$
- 9. If tan(x + iy) = sin(u + iv), prove that, sin 2x cot u = sinh 2y coth v.

2 | M - 5 4 0 0 1 (S 1) - 3 6 7