Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), B-Tech, Diploma, BBA, BCA, MBA, MCA, M-Tech, PGDCA, B-Com, BSC-IT, MSC-IT.

Roll No. Total No. of Pages: 03

Total No. of Questions: 07

B.Com. (2011 & Onward) (Sem.-3)

OPERATION RESEARCH

Subject Code: BCOP-304

Paper ID : [B1127]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

- 1. Write briefly:
 - a) Is the set $S = \{(x_1, x_2) : 0 < x_1^2 + x_2^2 \le 4\}$ convex? Justify your answer.
 - b) What is the necessary and sufficient condition for the existence of a feasible solution to an $m \times n$ transportation problem?
 - c) Find all basic solutions for the system

$$x_1 + 2x_2 \le 6$$

 $3x_1 - x_2 \le 7$; $x_1, x_2 \ge 0$

- d) While solving an LPP, maximize Z = CX, s.t. AX = b, $X \ge 0$, $b \ge 0$, what indicates "unbounded solution".
- e) Explain the following terms.
 - (i) Total float
 - (ii) Independent float.
- f) Explain the meaning of 'Crashing' in network techniques.
- g) Explain the four elements that characterize sequencing problem.
- h) Prove that the dual of the given primal, is the primal.
- i) Write the dual of

Minimize
$$Z = 4x_1 - 8x_2$$

s.t. $2x_1 + 6x_2 = 3$
 $x_1 + 4x_2 \le 6$; x_1, x_2 – unrestricted.

j) Write three major limitations of Operation Research.

1 | M-22016 (S3)-86

SECTION-B

2. Solve the following problem using two-phase method:

Minimize
$$Z = 3x_1 + x_2 - 2x_3$$

s.t. $4x_1 + 2x_2 - x_3 \le 1$
 $x_1 + x_2 + x_3 = 5$
 $2x_2 + 4x_3 = 3$; $x_1, x_2, x_3 \ge 0$

3. Write the dual of given primal problem. Solve the dual problem using simplex methods and then write the solution of primal problem.

Maximize
$$Z = 8x_1 + x_2$$

s.t.
$$8x_1 + x_2 \le 8$$

 $2x_1 + x_2 \le 6$
 $3x_1 + x_2 \le 6$
 $x_1 + 6x_2 \le 8$; $x_1, x_2, \ge 0$

4. Reduce the following game by dominance property and solve it :

	1	2	3	4	5
I	1	2	7	3	4
II III IIV	3	4	1	6	5
III	5	6	7	5	6
IV	0	2	1	3	2

5. Solve the following transportation problem to get an optimum solution :

	\mathbf{D}_1	$\mathbf{D_2}$	\mathbf{D}_3	$\mathbf{D_4}$	Available
O_1	2	3	1	2	40
O_2	5	4	2	6	60
O_3	3	9	7	2	80
Demand	10	40	60	20	-

2 M-22016 (S3)-86

Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), B-Tech, Diploma, BBA, BCA, MBA, MCA, M-Tech, PGDCA, B-Com, BSC-IT, MSC-IT.

6. A small workshop undertaking repair of damaged cars has one denter and one painter. Presently there are 6 cars needing repair. The following estimates in hours of time needed for denting and painting on the cars are available.

Car –	1	2	3	4	5	6
Denting time -	4	7	3	12	11	9
Painting time –	11	7	10	8	10	13

What is the sequence that completes all the jobs in minimum time? What is the corresponding schedule of jobs?

7. Consider the network given in following data:

Activity	_	A	В	C	D	E	F	G	Н	I	J
Immediate Predecessor	_	_	A	A	A	В	C,D	D	В	E,F,G	G
Activity Duration (days)	_	2	3	4	5	6	3	4	7	2	3

- (i) Draw the network
- (ii) Find critical path
- (iii) Find free floats and Total floats of each activity.

3 M-22016 (S3)-86