Roll No.

Total No. of Questions: 09]

B. Tech. (Sem. - $\mathbf{2}^{\text {nd }}$)
 ENGINEERING MATHEMATICS - II
 SUB.JECT CODE : AM - 102
 Paper ID : [A0120]

[Note : Please fill subject code and paper ID on OMR]
Time: 03 Hours
Maximum Marks : 60

Instruction to Candidates:

1) Section - A is Compulsory.
2) Attempt any Five questions from Section - B \& C.
3) Select atleast Two questions from Section - B \& C.

> Section - A

Q1)
[Marks : 2 Each]
a) State Cayley Hamilton theorem.
b) Prove that the following matrix is orthogonal $\mathrm{A}=\left[\begin{array}{ccc}-2 / 3 & 1 / 3 & 2 / 3 \\ 2 / 3 & 2 / 3 & 1 / 3 \\ 1 / 3 & -2 / 3 & 2 / 3\end{array}\right]$.
c) Find the directional derivative of $f(x, y, z)=x y^{2}+y z^{2}$ at the point $(2,-1,1)$ in the direction of vector $\hat{i}+2 \hat{j}+2 \hat{k}$.
d) If $u f=\nabla \mathrm{V}$, where u, v are scalar fields and f is a vector field show that f. $\operatorname{curl} f=0$.
e) Solve $\frac{d y}{d x}+\frac{y \cos x+\sin y+y}{\sin x+x \cos y+x}=0$.
f) Find the inverse transformation of

$$
\begin{aligned}
& y_{1}=x_{1}+2 x_{2}+5 x_{3} . \\
& y_{2}=-x_{2}+2 x_{3} \\
& y_{3}=2 x_{1}+4 x_{2}+11 x_{3} .
\end{aligned}
$$

g) Define types of Errors in a testing of Hypothesis.
h) If the probability of a bad reaction from a certain injection is 0.001 determine the chance that out of 2000 individuals more than two will get a bad reaction.
i) Solve $x \frac{d y}{d x}+y=x^{3} y^{6}$.
j) Solve $y-2 p x=\tan ^{-1}\left(x p^{2}\right)$.

Section - B

[Marks : 8 Each]
Q2) Diagonalize

$$
A=\left[\begin{array}{lll}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

and hence find A^{8}. Find the modal matrix.

Q3) Solve
(a) $(y+x) d y=(y-x) d x$.
(b) $(x-2 y+1) d x+(4 x-3 y-6) d y=0$.

Q4) Solve
(a) $x p^{2}-y p-y=0$.
(b) $\left(\mathrm{D}^{2}+1\right) y=\operatorname{cosec} x \cdot \cot x$.

Q5) A 32 kg weight is suspended from a spring having constant $4 \mathrm{~kg} / \mathrm{ft}$ prove that the motion is one of resonance if a force $16 \sin 2 t$ is applied and damping force is negligible. Assume that initially the weight is at rest in the equilibrium position.

Section - C

[Marks: 8 Each]
Q6) If V is the resion in the first octant bounded by $y^{2}+z^{2}=9$ and the plane $x=2$ and $\vec{f}=2 x^{2} y \hat{i}+y^{2} \hat{j}+4 x z^{2} \hat{k}$. Then evaluate $\iiint_{v}(\bar{v} \bar{f}) d v$.

Q7) Prove that poisson distribution is the limiting case of binomial distribution for very large trials with very small probability.

Q8) The length of life x of certain computers is approximately normally distributed with mean 800 hours and standard deviation 40 hours. If a random sample of 30 computers has an average life of 788 hours, test the null hypothesis that $\mu=800$ hours against the alternative that $\mu \neq 800$ hours at 5% level of significance.

Q9) State Gauss's Divergence theorem and using it evaluate $\iint_{\mathrm{s}} \overline{\mathrm{A}}$ nds, where $\mathrm{A}=2 x y \hat{i}+y z^{2} \hat{j}+x z \hat{k}$ and s is the surface of the region bounded by $x=0$, $y=0, z=0, y=3$ and $x+2 z=6$.

