# B.Tech. (Sem. - $1^{\text {st }} / 2^{\text {nd }}$ ) <br> ENGINEERING MATHEMATICS - II <br> SUB.JECT CODE : AM - 102 ( 2 k 4 \& Onwards) <br> Paper ID : [A0119] <br> [Note : Please fill subject code and paper ID on OMR] <br> Maximum Marks : 60 

Time : 03 Hours

## Instruction to Candidates:

1) Section - A is Compulsory.
2) Attempt any Five questions from Section - B \& C.
3) Select atleast Two questions from Section - B \& C.

Section - A
Q1)
(Marks : 2 each)
a) What do you understand by complementary function? Explain.
b) Are these vectors linearly independent?

$$
x_{1}=(1,2,1), x_{2}=(2,1,4), x_{3}=(4,5,6), x_{4}=(1,8,-3)
$$

c) State Cayley - Hamilton theorem.
d) Define order and degree of an ordinary differential equation.
e) State necessary conditions for an ordinary differential equation to be exact.
f) Define directional derivative of a function.
g) State Type I and Type II errors in sampling.
h) Define Null hypothesis and critical region.
i) State Gauss divergence theorem.
j) Show that if $A=\left[\begin{array}{ccc}-1 & 2+i & 5-3 i \\ 2-i & 7 & 5 i \\ 5+3 i & -5 i & 2\end{array}\right]$, then $i A$ is skew Hermitian.
(Marks : 8 each)
Q2) (a) Solve the equations:

$$
5 x+3 y+7 z=4, \quad 3 x+26 y+2 z=9, \quad 7 x+2 y+11 z=5
$$

(b) Find the eigen-values and eigenvectors of $A=\left[\begin{array}{lll}8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1\end{array}\right]$.

Q3) (a) Prove that the necessary and sufficient condition for the differential equation $M d x+N d y=0$, to be exact is $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.
(b) Solve : $x d y-y d x=\left(x^{2}+y^{2}\right) d x$.

Q4) (a) Solve : $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \sin x$
(b) $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+4=\log x \sin (\log x)$

Q5) (a) If an e.m.f. $E \sin \omega t$ is applied to L-C-R circuit at time t satisfies the equation $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{c}=E \sin \omega t$. If $R=2 \sqrt{L C}$, solve the differential equation for $q$.
(b) A body executes damped forced vibrations given by the equation $\frac{d^{2} x}{d t^{2}}+2 K \frac{d x}{d t}+b x^{2}=e^{-K t} \sin \omega t$.

Solve the equation for the cases : (i) $\omega^{2} \neq b^{2}-K^{2}$ and $\omega^{2}=b^{2}-K^{2}$.

## Section - C

$$
\text { (Marks : } 8 \text { each) }
$$

Q6) (a) If $\vec{r}=(a \cos t, a \sin t$, at $\tan \alpha)$, find $\left|\frac{d \vec{r}}{d t} \times \frac{d^{2} \vec{r}}{d t^{2}}\right|$ and $\left|\frac{d \vec{r}}{d t}, \frac{d^{2} \vec{r}}{d t^{2}}, \frac{d^{3} \vec{r}}{d t^{3}}\right|$.
(b) Prove that $\nabla \times(\phi \vec{a})=\phi \nabla \times \vec{a}+\nabla \phi \times \vec{a}$.

Q7) (a) State and prove Stokes theorem.
(b) Use divergence theorem to evaluate $\iint_{S} \vec{F} \cdot d S, \vec{F}=x^{3} \hat{i}+y^{3} \hat{j}+z^{3} \hat{k}$, S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.

Q8) (a) Find mean and variance of Poisson distribution.
(b) Find a binomial distribution for the following data :

| x : | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}:$ | 2 | 14 | 20 | 34 | 22 | 8 |

Q9) (a) A sample of 20 items has mean 42 units and S.D. 5 units .test the hypothesis that it is a random sample from the normal population with mean 45 units given that $t_{0.05}=2.09$, for 19 d.f.
(b) Write a short note on hypothesis testing and its uses.

