Roll No.
Total No. of Questions : 09

B.Tech. (Sem.-2)
 ENGINEERING MATHEMATICS-II
 Subject Code : AM-102 (2004-2010 Batch)
 Paper ID : [A0119]

Time : 3 Hrs.

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY.
2. Attempt any FIVE questions SECTION - B \& C.
3. Select at least TWO questions from SECTION - B \& C.

$$
\text { SECTION-A } \quad(10 \times 2=10 \text { Marks })
$$

1. (a) Using Guass Jordan method find inverse of the matrix $\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$.
(b) Prove that inverse of a unitary matrix is also a unitary matrix.
(c) Solve the differential equation $\frac{d y}{d x}+y=x y^{3}$.
(d) Show that necessary condition for the differential equation $\mathrm{M} d x+\mathrm{N} d y=0$ to be exact is $\frac{\partial \mathrm{M}}{\partial y}=\frac{\partial \mathrm{N}}{\partial x}$. Is it sufficient also ?
(e) How many times a second pendulum beats in a day?
(f) If \vec{a} is a vector with constant magnitude then show that \vec{a} and $\frac{d \vec{a}}{d t}$ are perpendicular, provided $\left|\frac{d \vec{a}}{d t}\right| \neq 0$.
(g) If $\vec{f}=\left(5 x y-6 x^{2}\right) \hat{i}+(2 y-4 x) \hat{j}$. Evaluate $\int_{\mathrm{C}} \vec{f} \cdot d l$ along the curve ' C ' in $x y$ plane $y=x^{3}$, from the point $(1,1)$ to $(2,8)$.
(h) Find the value of ' a ' so that
$\vec{f}=\left(a x^{2} y+y z\right) \hat{i}+\left(x y^{2}-x z^{2}\right) \hat{j}+\left(2 x y z-2 x^{2} y^{2}\right) \hat{k}$ is solenoidal.
(i) If on an average ' 1 ' vessel in every 10 is wrecked, find the probability that out of 5 vessels expected to arrive, at least 4 will arrive safely.
(j) A die was thrown 9000 times and a throw of 3 or 4 was observed 3,240 times. Show that die is biased.

SECTION-B

(8 Marks each)
2. (a) Find the value of ' λ ' for which the following equations have non-zero solutions :

$$
\begin{aligned}
& x+2 y+3 z=\lambda x \\
& 3 x+y+2 z=\lambda y \\
& 2 x+3 y+z=\lambda z
\end{aligned}
$$

(b) Find the Eigen values and Eigen vectors of the matrix $\left[\begin{array}{rrr}8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$.
3. (a) Solve the differential equation:
$\left.3 x^{2} y^{3} e^{y}+y^{3}+y^{2}\right) d x+\left(x^{3} y^{3} e^{y}-x y\right) d y=0$
(b) Define Clairaut's Equation. Find its general solution.
4. (a) Find the general solution of $\frac{d^{2} y}{d x^{2}}-4 y=x \sin h x$.
(b) Solve the given equation by variation of parameters method:

$$
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+a y=\frac{e^{3 x}}{x^{2}}
$$

5. (a) In an LCR circuit an inductance L of one henry, resistance of 6 ohm and a condensor of $\frac{1}{9}$ farad have been connected through a battery of e.m.f. ' $\mathrm{E}=\sin t^{\prime}$. If $\mathrm{I}=\theta=0$ at $t=0$, find charge θ and current I.
(b) At the end of three successive seconds, the distances of a point moving with simple harmonic motion from its mean position measured in the same direction are $1,3,4$. Find the period of complete oscillations.

SECTION-C

(8 Marks each)
6. (a) Prove that $\nabla \times(\phi \vec{f})=\nabla \phi \times \vec{f}+\phi(\nabla \times \vec{f})$
where ϕ is a scalar point function $\& \vec{f}$ is a vector point function.
(b) Evaluate $\iint_{\mathrm{S}} \vec{f} \cdot \hat{n} d s$, where $\vec{f}=y z \hat{i}+x z \hat{j}+z y \hat{k}$ and S is that part of the surface of the sphere $x^{2}+y^{2}+z^{2}=1$, which lies in the first octant.
7. (a) Verify Gauss's divergence theorem for $\vec{f}=\left(x^{3}-y z\right) \hat{i}-2 x^{2} y \hat{j}+2 \hat{k}$ taken over the cube bounded by the planes $x=0, x=a, y=0$, $y=a, z=0$ and $z=a$.
(b) Verify Green's theorem in the $x y$ plane for $\oint_{\mathrm{C}}\left(x y^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y$ around the boundary ' C ' of the region enclosed by $y^{2}=8 x$ and $x=2$, above x-axis.
8. (a) In a distribution exactly normal $10 \cdot 03 \%$ of the items are under 25 kg wt. and 89.97% of the items are under 70 kg wt. What are the mean and standard deviation of the distribution?
(b) Fit a parabola to the following data:

$x:$	1	2	3	4
$y:$	0.30	0.64	1.32	5.40

9. (a) A sample of 10 boys had the following IQ : 70, 120, 110, 101, 88, $83,95,98,107,100$.

Do these data support the assumption of population mean IQ of 100 at 5% level of significance?
(b) A set of 5 similar coins is tossed 320 times and the result is

No of heads	0	1	2	3	4	5
Frequency	6	27	72	112	71	32

Test the hypothesis that data follows a binomial distribution.

