Roll No. Total No. of Pages : 03
Total No. of Questions : 09
B.Tech. (Sem.–1 st)
ENGINEERING MATHEMATICS-I
Subject Code:BTAM-101、(2011 & 2012 Batch)
Paper ID : [A1101]
Time : 3 Hrs. Max. Marks : 60
INSTRUCTION TO CANDIDATES :
1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B & C. have FOUR questions each.
 Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B & C.
SECTION-A
1. Answer briefly :
(a) Identify the symmetry of the polar curve $r = \sin \frac{\theta}{2}$.
(a) identify the symmetry of the polar curve $r - \sin \frac{1}{2}$.
(b) If $u = F(x - y, y - z, z - x)$, then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.
(c) If J = $\frac{\partial(u,v)}{\partial(x,y)}$, J' = $\frac{\partial(x,y)}{\partial(u,v)}$, then show that JJ' = 1, where J stands
for Jacobian.
(d) Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx .$
(e) Find the polar equation of the curve $x^2 + (y - 3)^2 = 9$ given in Cartesian form .
(f) State Gauss Divergence Theorem.
(g) If $\overrightarrow{F} = \operatorname{grad}(x^3 + y^3 + z^3 - 3xyz)$, then find div \overrightarrow{F} .

[N4- 1512]

(h) Find the work done by the force field $\vec{F} = (y - x^2)\hat{i} + (z - y^2)\hat{j}$

+ $(x - z^2)\hat{k}$ over the curve $\vec{r}(t) = t\hat{i} + t^2\hat{j} + t^3\hat{k}, \ 0 \le t \le 1$, from (0,0,0) to (1,1,1).

- (i) Obtain the local extreme values of the function f(x, y) = xy.
- (j) The period of a simple pendulum is $T = 2\pi \sqrt{l/g}$, find the maximum error in T due to possible error up to 1% in *l* and 2.5% in g.

SECTION-B

- 2. (a) Trace the curve $y^2(a x) = x^2(a + x)$ by giving all salient features in detail.
 - (b) If ρ_1 and ρ_2 be the radii of curvature at the extremities of two

conjugate diameters of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then prove that $(\rho_1)^{2/3} + (\rho_2)^{2/3} (ab)^{2/3} = a^2 + b^2$. (4, 4)

- 3. (a) Find the entire length of the Cardiode $r = a(1 + \cos \theta)$. Also show that upper half is bisected by the ray $\theta = \pi/3$.
 - (b) The area bounded by an arc of the curve

 $x = a(\theta - \sin \theta), y = a(1 - \cos \theta), 0 \le \theta \le 2\pi$

and the x-axis is revolved around x-axis. Find the volume of the solid generated. (4, 4)

4. (a) Transform the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ into polar co-ordinates.

(b) If
$$u = \sin^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$$
, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \tan u$. (5, 3)

- (a) A rectangular box open at the top is to have a volume of 32 cubic feet. Find the dimensions of the box requiring the least material for its construction.
 - (b) Expand $f(x, y) = \sin xy$ in ascending powers of (x 1) and $(y (\pi/2))$ up to second degree terms. (4, 4)

[N-1-1512]

SECTION-C

6. (a) Find the area lying inside the curve $r = a(1 + \cos \theta)$ and outside the curve r = a.

> l

C C vertices are (1, 0), (0, 1), (-1, 0). (5, 3)

9. (a) Verify Green's theorem for $\oint_C [(3x^2 - 8y^2) dx + (4y - 6xy) dy]$, where

C is the boundary of the region by x = 0, y = 0, x + y = 1.

(b) Evaluate the triple integral
$$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} xyz \, dx \, dy \, dz \,.$$
 (5, 3)