Roll	No.		Total No. of Pages : 03	
Total No. of Questions : 09				
B.Tech. (Sem.–1st) ENGINEERING MATHEMATICS-I Subject Code:AM-101 (2005-2010 Batches) Paper ID:[A0111]				
Time:3 Hrs.			Max. Marks : 60	
INSTRUCTION TO CANDIDATES :				
1. 2. 3.	TWO marks each. . SECTION-B & C have FOUR questions each.			
4.	EIGHT marks each.			
SECTION-A				
Ι.	Write briefly :	X	(∂u) (∂r) 1	
(a) If $x^2 = au + bv$, $y^2 = au - bv$, then prove that $\left(\frac{\partial u}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_v = \frac{1}{2}$.				
(b) If $u = \log (x^2 + xy + y^2)$, then use Euler's theorem to show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2$				
	(c) Express the integral	$\int_{0}^{\infty} e^{-x^4} dx$ in terms of	of gamma function.	
	(d) Test the convergence	e/divergence of the s	series $\sum_{n=1}^{\infty} \frac{n^2}{3^n}$.	

[N-1- 1055]

(e) Change the order of integration of $\int_{0}^{2a} \int_{x^{2}/4a}^{3a-x} f(x, y) \, dx \, dy.$

(f) Test whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$ is absolutely convergent or not.

Explain how?

- (g) Use De-Moivre's theorem to express $\sin^5\theta \cos^2\theta$ in a series of sines of multiples of θ .
- (h) Find the general value i^i .
- (i) Verify that $f_{xy} = f_{yx}$, when $f(x, y) = \sin^{-1} (y/x)$.
- (j) Obtain the real part of $\tan (A + iB)$.

SECTION-B

- (a) Trace the curve $y^2 (a + x) = x^2 (3a x)$ be giving all salient features in detail.
- (b) Find the radius of curvature at the point (r, θ) of the curve $r = a(1 \cos \theta)$ and show that ρ^2 varies as r^2 .
- 3. (a) Find the area included between the curves $r = a(1 \cos \theta)$ and $r = a(1 + \cos \theta)$.
 - (b) Find the surface of the solid generated by the revolution of the curve $x = a \cos^3 t$, $y = b \sin^3 t$ about *y*-axis.

4. (a) If
$$x^x y^y z^z = c$$
, then show that at $x = y = z$, $\frac{\partial^2 z}{\partial x \partial y} = -(x \log e x)^{-1}$.

- (b) Find the points on the surface $z^2 = xy + 1$ nearest to the origin
- 5. (a) Find the centre of gravity of the arc of the curve $x^{2/3} + y^{2/3} = a^{2/3}$ in the first quadrant.
 - (b) Expand $f(x, y) = \sin x y$ in ascending powers of (x 1) and $(y \pi/2)$ by using Taylor's theorem up to second degree terms.

[N-1- 1055

1

SECTION-C

6. (a) Evaluate
$$\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^2}} (x^2 + y^2) dx dy$$
, by changing into polar co-ordinates.

(b) Find the volume bounded by the co-ordinate planes x=0, y=0, z=0and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

7. (a) Find the centre and radius of the circle

$$x^{2} + y^{2} + z^{2} - 2x - 4y - 6z - 2 = 0, x + 2y + 2z - 20 = 0.$$

- (b) Find the equation of a cone whose semi vertical angle is $\pi/4$, has its vertex at origin and axis along the line x = -2y = z.
- 8. (a) If $\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$, then prove that

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = \frac{3}{2} = \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$$

(b) If $\sin^{-1}(u + iv) = \alpha + i\beta$ then prove that $\sin^2 \alpha$ and $\cosh^2 \beta$ are the roots of the equation

$$x^2 - (1 + u^2 + v^2)x + u^2 = 0.$$

9. (a) Test for what values of x does the series

$$\frac{x}{1.2} + \frac{x^2}{3.4} + \frac{x^3}{5.6} + \frac{x^4}{7.8} + \dots \infty$$

converges/diverges.

(b) Examine the convergence of the following series :

(i)
$$\sum_{n=1}^{\infty} \frac{e^n}{1+e^{2n}}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{1}{1+2^2+3^2+\ldots+n^2}$$

[N-1- 1055]