Total no of pages :3 Total No. of Qustions :09

B.Tech (Sem.1st)

ENGINEERING MATHEMATICS-I Subject Code :BTAM-101 Paper ID : [A1101]

Time: 3 Hrs.

Max. Marks :60

2%.0

- *Note:-* (1) *Question-I is compulsory to attempt, Consisting of ten short answer type question carrying two marks each.*
 - (2) Attempt five questions (carrying eight marks each) by electing at least two questions each form Section-A and Section B
- Q1. (a) Graph the set of points whose polar co-ordinates satisfy the conditions.

$r \leq 0, \theta = \pi/4$

- (b) Obtain the local extreme values of the function $f(x,y)=x^2+2xy$
- (c) Evaluate $\iint_{0x}^{\pi\pi} \frac{\sin y}{y} dy dx$.

d) If
$$f(\mathbf{x},\mathbf{y}) = \sum_{n=0}^{\infty} (\mathbf{x}\mathbf{y})^n$$
, given $|x\mathbf{y}| < 1$, then find $\frac{\partial f}{\partial \mathbf{x}}$, $\frac{\partial f}{\partial \mathbf{y}}$.

- (e) \vec{F} and \vec{G} are irrotational vector point functions, then show that $\vec{F} \times \vec{G}$ is a solenoidal function.
- (f) State Stoke's Theorem.
- (g) If $\vec{F} = \text{grad}(x^3 + y^3 + z^3 3xyz)$, then find curl \vec{F}
- (h) Find the work done by the force field $\vec{F} = xy \hat{i} + (y-x)\hat{j}$ over the straight line from (1,1) to (2,3).
- (i) Rectify the curve $x = acos^3 t, y = asin^3 t$.
- (j) Find the possible percentage error in computing the resistance *r* from the formula (2x10=20) $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2}$, if r_1 and r_2 in error by 2%.

Visit: www.brpaper.com for Previous year Question papers of B-tech, BBA, BCA, MCA, MBA, BSc-IT, Diploma, Distance Education, Msc-IT,M-Tech,PGDCA, B-Com.

Section-A

- Q2. (a) Trace the curve $x^3+y^3=3axy$ by giving all salient features in detail.
 - (b) Find the volume of the solid generated by the revolution of the curve $r = a(1 + \cos\theta)$ about initial line. (5,3)
- Q3. (a) If ρ be the radius of curvature at any point P of the curve y²=4ax and S is its focus, then show that ρ^2 varies as (SP)³ (5,3)
 - (b) Find the area between the curve $y^2(2a-x)=x^3$ and its asymptote.
- Q4. (a) Find the points on the surface $z^2 = xy + 1$ nearest to the origin.
 - (b) Expand $f(x,y) = \tan^{-1} xy$ in ascending powers of (x-1) and (y-1) up to second degree terms. (4,4)
- Q5. (a) If $u = \tan^{-1} \frac{x^3 + y^3}{x y}$, then prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 2 \sin u \cos 3u$

(b) If
$$u = \log (x^3 + y^3 + z^3 - 3xyz)$$
, then prove that
 $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -9(x + y + z)^{-2}$
Section-B
(a) Using triple integral find the volume of the tetrahedron bounded by the co-ordinate planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$

(b) Evaluate : $\iint_{0x^2}^{12-x} xy \, dxdy$ by changing the order of integration. (4,4)

Q7. (a) Prove that Curl (Curl
$$\vec{F}$$
) = grad (div \vec{F}) - ∇^2

(b) If $\vec{F} = yz\hat{i} - xz\hat{j} + xy\hat{k}$, then evaluate $\iint_{S} \vec{F} \cdot \hat{N} \vec{B}s$, where S is the portion of the surface of the sphere $x^2 + y^2 + z^2 = 1$, in the first octant. (3,5)

Q8. (a) Apply Stoke's theorem to evaluate the line integral $\int_{c} [ydx+zdy+xdz]$, Where C is the curve of intersection of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and the plane x+z=a.

(b) Using Green's theorem evaluate the line integral $\int_{c} [(y-sinx)dx + cosxdy]$

Where C is the plane triangle bounded by the lines y=0, $x=\pi/2$, $y=(2/\pi)x$

Visit: www.brpaper.com for Previous year Question papers of B-tech, BBA, BCA, MCA, MBA, BSc-IT, Diploma, Distance Education, Msc-IT, M-Tech, PGDCA, B-Com.

www.brpaper.com

- (a) Verify Divergence theorem for $\vec{F} = (x^2 yz)\hat{i} + (y^2 xz)\hat{j} + (z^2 xy)\hat{k}$ Taken over the **Q**9. rectangular parallelepiped $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$.
 - (b) Evaluate $\iint_{R} e^{x^2+y^2} dxdy$, where R is semicircular region bounded by the x-axis and the curve $y=\sqrt{1-x^2}$, by changing to polar co-ordinates. (5,3)

www.brpaper.com