Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), B-Tech, Diploma, BBA, BCA, MBA, MCA, M-Tech, PGDCA, B-Com, BSC-IT, MSC-IT.

Roll No. Total No. of Pages: 02

Total No. of Questions: 09

B.Tech. (2011 Onwards) (Sem.-1)
ENGINEERING MATHEMATICS - I

Subject Code: BTAM-101 Paper ID: [A1101]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.
- Symbols used have their usual meanings. Statistical tables, if demanded, may be provided.

SECTION-A

1. Solve the following:

- a) Find the radius of curvature of the parabola $y^2 = 4ax$ at any point (x,y).
- b) Find the length of the arc of the curve $y = \log \sec x$ from x = 0 to $x = \pi/3$.
- c) If $u = exp(x^{\nu})$, then find $\frac{\partial^2 u}{\partial y \partial x}$.
- d) If $z = xy^2 + x^2y$, $x = at^2$, y = 2at, then find $\frac{dz}{dt}$.
- e) Find the percentage error in calculating the area of a rectangle, when an error of 3% is made in measuring each of its sides.
- f) Evaluate $\int_{0}^{3} \int_{0}^{1} (x^2 + 3y^2) dy dx$.
- g) Find the magnitude of velocity and acceleration of a particle which moves along the curve $x = 2 \sin 3t$, $y = 2 \cos 3t$, z = 8t at any time t > 0.
- h) Show that $\overline{F} = (y^2 z^2 + 3yz 2x)i + (3xz + 2xy)j + (3xy 2xz + 2z)k$ is solenoidal.
- i) State Green's theorem in plane.
- j) State Gauss divergence theorem.

1 | M-54091 (S1)-7

Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), B-Tech, Diploma, BBA, BCA, MBA, MCA, M-Tech, PGDCA, B-Com, BSC-IT, MSC-IT.

SECTION-B

- 2. a) Trace the cardioid $r = a(1 \cos \theta)$.
 - b) Trace the cissoid $y^2(2a x) = x^3$
- 3. a) Find the area bounded by the ellipse $b^2x^2 + a^2y^2 = a^2b^2$, (a > b).
 - b) Find the volume of the solid generated by the revolution of the loop of the curve $x = t^2$, $3y = 3t t^3$ about the x axis.
- 4. a) If $u = \frac{x^3 y^3}{x^3 + y^3}$, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3u$.
 - b) If $u = x^2 y^2$, v = 2xy and $x = r \cos \theta$, $y = r \sin \theta$ then find $\frac{\partial(u, v)}{\partial(r, \theta)}$.
- 5. Using Lagrange's method of undetermined multipliers, show that the rectangular solid of maximum value that can be inscribed in a sphere is a cube.

SECTION-C

- 6. a) Change the order of integration of $\int_{0}^{1} \int_{x}^{\sqrt{x}} f(x, y) dy dx$.
 - b) Using the transformation u = x y, v = x + y, evaluate $\iint \cos\left(\frac{x y}{x + y}\right) dxdy$ over the region bounded by the lines x = 0, y = 0, 1 = x + y.
- 7. a) Evaluate $\iiint x^2yz \, dxdydz$ over the region bounded by the planes x = 0, y = 0, z = 0, x + y + z = 1.
 - b) Show that $\nabla \left(\frac{\overline{a} \cdot \overline{r}}{r^n}\right) = \frac{\overline{a}}{r^n} \frac{n(\overline{a} \cdot \overline{r})}{r^{n+2}} \overline{r}$, where $\overline{r} = xi + yj + zk, r = |r|$ is a constant vector
- 8. a) Evaluate $\iint_{S} (yz \, dydz + xz \, dzdx + xy \, dxdy)$ over the surface of the sphere $x^2 + y^2 + z^2 = 1$ in the positive octant.
 - b) Find work done in moving a particle in the force field $\overline{F} = 3x^2i + (2xz y)j + zk$ along the curves $x^2 = 4y$ and $3x^3 = 8z$ from x = 0 to x = 2.
- 9. Verify Gauss divergence theorem for $\overline{F} = 4xzi y^2j + yzk$ over the cube x = 0, x = 1 y = 0, y = 1, z = 0, z = 1.

2 M-54091 (S1)-7