

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(2009-2010 Batches) (Sem.-1)
ENGINEERING MATHEMATICS-I

Subject Code: AM-101 Paper ID: [A0111]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

1. Write briefly:

a) Simplify
$$\left(\frac{\cos\theta + i\sin\theta}{\sin\theta + i\cos\theta}\right)^4$$

- b) Find the general value of $\log (1 + i \tan \alpha)$.
- c) Define Gauss Test.
- d) Prove that Beta function is symmetric.
- e) Write an equation for hyperboloid.
- f) Define root mean square value.

g) If
$$u = \frac{yz}{x}$$
, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$. Find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

- h) Find the equation of the tangent plane and the normal to $xy + z = a^2$ at (1, 1, 1).
- i) Define Oscillatory Sequence.
- j) Expand $e^x \sin y$ in powers of x and y.

1 | M - 5 4 0 0 1 (S 1) - 6

SECTION-B

- 2. Trace the curve y = x+1/x.
- 3. Find the area above the x-axis included between the curves $y^2 = 2ax x^2$, $y^2 = ax$.
- 4. If $u = x^2 \tan^{-1} \frac{y}{x} y^2 \tan^{-1} \frac{x}{y}$, then evaluate $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.
- 5. Find the point on the surface $z^2 = xy + 1$ nearest to the origin.

SECTION-C

- 6. Find the equation of the circular cylinder having for its base the circle $x^2 + y^2 + z^2 = 9$, x y + z = 3
- 7. Find the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$
- 8. Test the convergence of the series $\frac{1}{1} + \frac{3}{7} \cdot x + \frac{3.6}{7.10} x^2 + \frac{3.6.9}{7.10.13} x^3 + \dots \infty$
- 9. If $\tan \frac{x}{2} = \tan h \frac{u}{2}$, then prove that $\tan x = \sinh u$, $\cos x \cos h u = 1$.

2 | M - 5 4 0 0 1 (S1) - 6