Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), B-Tech, Diploma, BBA, BCA, MBA, MCA, M-Tech, PGDCA, B-Com, BSC-IT, MSC-IT.

Roll No. Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(BME/ECE/EEE/EEE/EIE/Textile) (Sem.-3) APPLIED MATHEMATICS - III / ENGINEERING MATHEMATICS

Subject Code: AM-201 Paper ID: [A0303]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

a. Are Cauchy Reimann equations satisfied at z = 0 for the function

$$f(z) = \begin{cases} \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}; & z \neq 0 \\ 0; & z = 0 \end{cases}$$

- b. State convolution theorem.
- c. Check the continuity of the function $f(z) = \begin{cases} \frac{xy}{x^2 + y^2}; & z \neq 0 \\ 0; & z = 0 \end{cases}$ at z = 0
- d. Write down the one dimensional heat equation.
- e. Define an odd function. What is the value of a_0 and a_n in the Fourier series expansion of an odd function defined in the interval (-1,1).
- f. State and prove first shift property of Laplace transforms.
- g. State Cauchy Reimann Equations in polar form.
- h. Is the function $x^2 y^2 y$ harmonic?

1 M-54501 (S2)-2437

Visit www.brpaper.com for downloading previous years question papers of 10th and 12th (PSEB and CBSE), B-Tech, Diploma, BBA, BCA, MBA, MCA, M-Tech, PGDCA, B-Com, BSC-IT, MSC-IT.

i. Evaluate
$$L^{-1}\left(\frac{1}{(s)^{\frac{9}{2}}}\right)$$
.

j. Evaluate
$$L$$
 $\begin{cases} t+2; 0 < t < 4 \\ 5; t > 4 \end{cases}$

SECTION-B

- 2. Evaluate $\oint_c \frac{2z^3 + z^2 + 4}{z^4 + 4z^2}$ where c is the circle |z 2| = 4, clockwise.
- 3. Show that $\int_0^\infty e^{-3t} t \cos t dt = \frac{2}{25}$ using Laplace transform.
- 4. Solve the differential equation

$$\frac{d^3y}{dx^3} + y = 1$$
; given that $y(0) = y'(0) = y''(0) = 0$

- 5. If $u v = (x + y)(x^2 + 4xy + y^2)$ and f(z) = u + iv is an analytic function, find the function f(z) in terms of z.
- 6. Solve the equation xp + yq = 3z

SECTION-C

7. Prove that the Fourier series expansion for the function $f(x) = \frac{1}{2}(\pi - x), 0 \le x \le 2\pi$ is given by $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$

Hence deduce that
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

- 8. Solve the differential equation $x^2y'' + xy' + (x^2-n^2)y = 0$ and hence obtain the Bessel's function.
- 9. A string of length L is stretched and fastened to two fixed points. Find the solution of the wave equation $y_{tt} = a^2 y_{xx}$ when initial displacement $y(x,0) = f(x) = b \sin \frac{\pi x}{L}$.

2 M-54501 (S2)-2437