PHYSICS (PH-101, May 2005)

Time: 3 Hrs

Max Marks: 60

Note: Section A is compulsory. Attempt any five questions from Section B and C taking at least two questions from each Section.

Section-A

- 1. (a) State the Ampere's circuital law in electromagnetism.
 - (b) Define the magnetic induction and magnetization.
 - (c) What is holography?
 - (d) What is total internal reflection?
 - (e) State Einstein's postulates of special theory of relativity.
 - (f) Explain Moseley's law.
 - (g) What is Compton Effect?
 - (h) What is the effect of magnetic field on superconductivity?
 - (i) What do you understand by Eigen values and Eigen functions?
 - (j) Give some applications of ferrites.

Section-B

- 2. What is meant by dielectric polarization? Define the terms electric intensity E, electrical polarization P and electric displacement D and establish the relation.
 - $D = \epsilon_0 E + P$ where ϵ_0 is permittivity of vacuum.
- 3. What do you understand by magnetic materials? What are differences between hard and soft magnetic materials?
- 4. Explain the term spontaneous and simulated emission. Explain the construction and working of a Ruby Laser.
- 5. What is numerical aperture? Calculate the numerical aperture and acceptance angle for an optical fiber, given that refractive index of core and cladding are 1.45 and 1.40 respectively.

Section-C

6. On the basis of Lorentz transformation discuss the following effects:

(a) Length contraction(b) time dilation

A scientist observes that a certain atom 'A' moving to him with velocity 2×10^{10} cm/sec emits a partial 'B' which moves with velocity 2.8×10^{10} cm/sec with respect to atom. Calculate the velocity of the emitted particle relative to scientist.

- 7. Explain the production of characteristic X-ray spectra. An X-ray tube operated at 40 KV emits a continuous X-ray spectrum with a short wavelength limit $X_m = 0.310$ Å. Calculate the Plank's constant.
- 8. What is the need of Quantum Mechanics? Discuss Born's interpretation and normalization of wave function. At certain time, the normalized wave function of a particle moving along x-axis has the form given by

$$\psi (x) = x + \beta \text{ for } -\beta < x < 0$$
$$= -x + \beta \text{ for } 0 < x < \beta$$

and zero else where. Find the value β of and the probability that the particle positions between x = $\beta/2$ and x = β

9. What is Miesnner effect? Show how London equations lead to this effect. A type-I superconductor with $T_c = 7K$ has shape $dB_T/d_T = -25mT/K = T_c$

Estimate its critical field at 6K. Calculate the jump in specific heat at T_c.