Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), B-Tech, Diploma, BBA, BCA, MBA, MCA, M-Tech, PGDCA, B-Com, BSC-IT, MSC-IT.

Roll No. Total No. of Pages: 03

Total No. of Questions: 09

B.Tech.(ME) (Sem.-7,8) MECHANICAL VIBRATIONS

Subject Code: ME-408 Paper ID: [A0841]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) Why the study of vibration is necessary in engineering?
- b) What is resonance?
- c) What is vibration isolation?
- d) Define semi definite system.
- e) Define a continuous system.
- f) Define eigen vector.
- g) What is longitudinal vibration?
- h) Explain the use of critical damping.
- i) How many nodes are there in a two rotor system?
- j) What is the difference between energy method and Rayleigh method?

1 | M C o d e 5 9 0 7 7 (S 2) - 5 7 0

SECTION-B

- 2. Split the harmonic motion $x = 10 \sin (\omega t + \pi/6)$ into two harmonic motions one having a phase angle of zero and the other of 45°.
- 3. Represent the periodic motions given in Fig.1 by harmonic motion.

Fig. 1

- 4. A spring mass system has spring constant k N/m and mass m kg. It has natural frequency of vibration as 12 *c.p.s.* An extra 2 Kg mass is coupled to m and nature frequency reduced by 2 *c.p.s.* Find the values of k and m.
- 5. Determine the nature frequency of the spring mass system shown in Fig.2

Fig. 2

6. Determine centrifugal pendulum vibration absorber.

SECTION-C

- 7. Derive the frequency equation of torsional vibrations for a free-free shaft of length *l*.
- 8. A four rotor system is shown in Fig.3. A torque $T = T_0 \sin \omega t$ acts on the second rotor.

$$J_1 = 100 \text{ kg} - \text{m}^2$$

$$J_3 = 10 \text{ kg} - \text{m}^2$$

$$J_2 = J_4 = 50 \text{ kg} - \text{m}^2$$

$$K_{t_1} = K_{t_2} = 10^4 \text{ N} - \text{m}^2/\text{ rad}$$

Determine the amplitude of vibration of all rotors.

$$K_{t_3} = 2 \times 10^4 \text{ N} - \text{m}^2/\text{ rad}$$

$$T_0 = 10,000 \text{ N-m}$$

 $\omega = 5 \text{ rad/sec.}$

Fig. 3

9. Solve the problem as phase in Fig.4.

Fig. 4