Previous year question paper for MATHS-1 (B-TECH 1st-2nd)

Engineering mathematics-1

Previous year question paper with solutions for Engineering mathematics-1 from 2005 to 2023

Our website provides solved previous year question paper for Engineering mathematics-1 from 2005 to 2023. Doing preparation from the previous year question paper helps you to get good marks in exams. From our MATHS-1 question paper bank, students can download solved previous year question paper. The solutions to these previous year question paper are very easy to understand.

PART A

1. Differential Calculus:

Curve tracing: Tracing of Standard Cartesian; Parametric and Polar curves; Curvature of Cartesian, Parametric and Polar curves. 

2. Integral Calculus:

Rectification of standard curves; Areas bounded by standard curves; Volumes and surfaces of revolution of curves; Applications of integral calculus to find centre of gravity and moment of inertia.

3. Partial Derivatives:

The function of two or more variables; Partial differentiation; Homogeneous functions and Euler‟s theorem; Composite functions; Total derivative; Derivative of an implicit function; Change of variable; Jacobians. 

4. Applications of Partial Differentiation:

Tangent and normal to a surface; Taylor‟s and Maclaurin‟s series for a function of two variables; Errors and approximations; Maxima and minima of function of several variables; Lagrange‟s method of undetermined multipliers.

PART B

5. Multiple Integrals:

A brief introduction of cylinder, cone and standard conicoids. Double and triple integral and their evaluation, change of order of integration, change of variable, Application of double and triple integration to find areas and volumes.

6. Vector Calculus:

Scalar and vector fields, differentiation of vectors, velocity and acceleration. Vector differential operators: Del, Gradient, Divergence and Curl, their physical interpretations. Formulae involving Del applied to point functions and their products. Line, surface and volume integrals. 

7. Application of Vector Calculus:

Flux, Solenoidal and Irrotational vectors. Gauss Divergence theorem. Green‟s theorem in plane, Stoke‟s theorem (without proofs) and their applications. 

2023
Download
Download
Download
Download
Download
2022
Download
Download
2020
Download
Download
Download
2019
Download
Download
Download
Download
Download
2018
Download Solution
Download
Download
Download
2017
Download
Download
Download
Download
2016
Download
Download
Download
Download
2015
Download
Download
Download
Download
2014
Download
Download
Download
Download
2013
Download
Download
2012
Download
Download
2011
Download
Download
2010
Download
Download
2009
Download
Download
2008
Download
Download
2006
Download
2005
Download