FLUID MACHINERY
1. General Concepts Impulse momentum principle; jet impingement on stationary and moving flat plates, and on stationary or moving vanes with jet striking at the centre and tangentially at one end of the vane; calculations for force exerted, work done and efficiency of jet. Basic components of a turbo machine and its classification on the basis of purpose, fluid dynamic action, operating principle, geometrical features, path followed by the fluid and the type of fluid etc. Euler's equation for energy transfer in a turbomachine and specifying the energy transfer in terms of fluid and rotor kinetic energy changes.
2. Pelton Turbine Component parts and operation; velocity triangles for different runners, work output; Effective head, available power and efficiency; design aspects such as mean diameter of wheel, jet ratio, number of jets, number of buckets with working proportions
3. Francis and Kaplan Turbines Component parts and operation velocity triangles and work output; working proportions and design parameters for the runner; Degree of reaction; Draft tubes - its function and types. Function and brief description of commonly used surge tanks.
4. Centrifugal Pumps Layout and installation; Main elements and their functions; Various types and classification; Pressure changes in a pump - suction, delivery and manometric heads; vane shape and its effect on head-capacity relationships; Departure from Euler's theory and losses; pump output and efficiency; Minimum starting speed and impeller diameters at the inner and outer periphery; Priming and priming devices, Multistage pumps - series and parallel arrangement; submersible pumps. Construction and operation; Axial and mixed flow pumps; Trouble shooting - field problems, causes and remedies.
5. Similarity Relations and Performance Characteristics Unit quantities, specific speed and model relationships, scale effect; cavitation and Thoma's cavitation number; Concept of Net Positive Suction Head (NPSH) and its application in determining turbine / pump setting
6. Reciprocating Pumps :-- Components parts and working; pressure variations due to piston acceleration; acceleration effects in suction and delivery pipes; work done against friction; maximum permissible vacuum during suction stroke; Air vessels
7. Hydraulic Devices and Systems Const., operation and utility of simple and differential accumulator, intensifier, fluid coupling and torque converter, Air lift and jet pumps; gear, vane and piston pumps.